Introduction
Hadoop framework distributes code execution automatically in a multi node cluster. This code is also distributed against the dataset. Code development in Hadoop can be done in Java and one has to implement a map function and a reduce function; both manipulate keys and values as inputs and outputs. At a higher level, there are two scripting languages that simplify the code: PIG is a specific scripting language, HIVE looks like SQL. So using HIVE is quite easy. It has a bunch of extension functions (called user defined functions) to transform data like regular expression tools and so on. A developer can add user defined functions, by developing them in Java. Another way to have a procedural logic that complements SQL Set-based language is to use a language like Python:
The goal of that post is to show an example of such a combination.
Here is how that could look on a small cluster. The work load is distributed on the different worker nodes:
At a worker node level, a Python process is created by core. Each process receives its part of the whole dataset:
Windows Azure comes with its Hadoop as a service called HDInsight. This allows to execute HIVE, PIG, and other Map/reduce jobs a few minutes after requesting the creation of a cluster. For HIVE, HDInsight comes with a sample table. Let’s run a HIVE + Python job against that hivesampletable table.
Hive and Python Script
In this example, we use a Python module to calculate the hash of a label in the sample table.
Hive is used to get the data, partition it and send the rows to the Python processes which are created on the different cluster nodes. Here is the code:
add file simple_sample.py; SELECT TRANSFORM (clientid, devicemake, devicemodel) USING 'D:\Python27\python.exe simple_sample.py' AS (clientid string, phoneLabel string, phoneHash string) FROM hivesampletable ORDER BY clientid LIMIT 50;
This can be read has: in the first 50 rows of hivesampletable table, select clientid, devicemake, devicemodel , pass them to the simple_sample.py python script that can be run with D:\Python27\python.exe. The script will send back columns clientid (a string), phoneLabel (a string) and phoneHash (a string).
Hive sends data to the simple_sample.py scripts. Here is the code of that script:
import sys import string import hashlib while True: line = sys.stdin.readline() if not line: break line = string.strip(line, "\n ") clientid, devicemake, devicemodel = string.split(line, "\t") phone_label = devicemake + ' ' + devicemodel print "\t".join([clientid, phone_label, hashlib.md5(phone_label).hexdigest()])
This script expects stdin lines. It parses them, and obtains the columned passed by Hive: clientid, devicemake, devicemodel. From that columns, it deduces the resulting columns: clientid, phoneLabel, phoneHash. In order to calculate phoneHash, it uses an imported module (hashlib). In order to output the result, the python script writes it to stdout, separated by TAB.
Let’s run it with PowerShell
Here is a sample PowerShell script that
- creates an HDInsight cluster
- Runs the job
- Gets the result
- Removes the cluster
Before running the script, the HIVE and the Python script must have been copied to the the Windows Azure storage:
Here is the PowerShell script:
Import-Module azure Add-AzureAccount $Subscription = 'Azdem169A44055X' $defaultStorageAccount = 'monstockageazure' $clusterName = 'monclusterhadoop' $clusterVersion='2.1' $clusterAdmin = 'cornac' $clusterPassword = 'LElzgqy#n87' $passwd = ConvertTo-SecureString $clusterPassword -AsPlainText -Force $clusterCredentials = New-Object System.Management.Automation.PSCredential ($clusterAdmin, $passwd) Set-AzureSubscription -SubscriptionName $Subscription -CurrentStorageAccount $defaultStorageAccount Select-AzureSubscription -Current $Subscription $storageAccount1 = (Get-AzureSubscription $Subscription).CurrentStorageAccountName $key1 = Get-AzureStorageKey -StorageAccountName $storageAccount1 | %{ $_.Primary } New-AzureHDInsightClusterConfig -ClusterSizeInNodes 3 | Set-AzureHDInsightDefaultStorage -StorageAccountName "${storageAccount1}.blob.core.windows.net" -StorageAccountKey $key1 ` -StorageContainerName $clusterName | New-AzureHDInsightCluster -Name $clusterName -Version $clusterVersion -Location "North Europe" -Credential $clusterCredentials Use-AzureHDInsightCluster "monclusterhadoop" $hiveJobVT = New-AzureHDInsightHiveJobDefinition -File "wasb://messcripts@monstockageazure.blob.core.windows.net/simple_sample.hql" $hiveJobVT.Files.Add("wasb://messcripts@monstockageazure.blob.core.windows.net/simple_sample.py") $startedHiveJobVT = $hiveJobVT | Start-AzureHDInsightJob -Credential $clusterCredentials -Cluster "monclusterhadoop" $startedHiveJobVT | Wait-AzureHDInsightJob -Credential $clusterCredentials Get-AzureHDInsightJobOutput -StandardError -JobId $startedHiveJobVT.JobId -Cluster "monclusterhadoop" Get-AzureHDInsightJobOutput -StandardOutput -JobId $startedHiveJobVT.JobId -Cluster "monclusterhadoop" Remove-AzureHDInsightCluster -Name $clusterName
Here is a sample execution result:
PS C:\benjguin\BigData_Hadoop\demos\simple> Import-Module azure Add-AzureAccount PS C:\benjguin\BigData_Hadoop\demos\simple> Import-Module azure Add-AzureAccount $Subscription = 'Azdem169A44055X' $defaultStorageAccount = 'monstockageazure' $clusterName = 'monclusterhadoop' $clusterVersion='2.1' $clusterAdmin = 'cornac' $clusterPassword = 'LElzgqy#n87' $passwd = ConvertTo-SecureString $clusterPassword -AsPlainText -Force $clusterCredentials = New-Object System.Management.Automation.PSCredential ($clusterAdmin, $passwd) Set-AzureSubscription -SubscriptionName $Subscription -CurrentStorageAccount $defaultStorageAccount Select-AzureSubscription -Current $Subscription $storageAccount1 = (Get-AzureSubscription $Subscription).CurrentStorageAccountName $key1 = Get-AzureStorageKey -StorageAccountName $storageAccount1 | %{ $_.Primary } New-AzureHDInsightClusterConfig -ClusterSizeInNodes 3 | Set-AzureHDInsightDefaultStorage -StorageAccountName "${storageAccount1}.blob.core.windows.net" -StorageAccountKey $key1 ` -StorageContainerName $clusterName | New-AzureHDInsightCluster -Name $clusterName -Version $clusterVersion -Location "North Europe" -Credential $clusterCredentials ClusterSizeInNodes : 3 ConnectionUrl : https://monclusterhadoop.azurehdinsight.net CreateDate : 03/03/2014 14:15:50 DefaultStorageAccount : monstockageazure.blob.core.windows.net HttpUserName : cornac Location : North Europe Name : monclusterhadoop State : Running StorageAccounts : {} SubscriptionId : 0fa85b4c-aa27-44ba-84e5-fa51aac32734 UserName : cornac Version : 2.1.4.0.526800 VersionStatus : Compatible PS C:\benjguin\BigData_Hadoop\demos\simple> Use-AzureHDInsightCluster "monclusterhadoop" $hiveJobVT = New-AzureHDInsightHiveJobDefinition -File "wasb://messcripts@monstockageazure.blob.core.windows.net/simple_sample.hql" $hiveJobVT.Files.Add("wasb://messcripts@monstockageazure.blob.core.windows.net/simple_sample.py") $startedHiveJobVT = $hiveJobVT | Start-AzureHDInsightJob -Credential $clusterCredentials -Cluster "monclusterhadoop" $startedHiveJobVT | Wait-AzureHDInsightJob -Credential $clusterCredentials Get-AzureHDInsightJobOutput -StandardError -JobId $startedHiveJobVT.JobId -Cluster "monclusterhadoop" Get-AzureHDInsightJobOutput -StandardOutput -JobId $startedHiveJobVT.JobId -Cluster "monclusterhadoop" Successfully connected to cluster monclusterhadoop Cluster : monclusterhadoop ExitCode : 0 Name : Hive: simple_sample.hql PercentComplete : map = 100%, reduce = 100% Query : State : Completed StatusDirectory : b4328d2f-589c-412e-83e5-f8a544cb321c SubmissionTime : 03/03/2014 14:36:48 JobId : job_201403031426_0003 Logging initialized using configuration in file:/C:/apps/dist/hive-0.11.0.1.3.5.0-03/conf/hive-log4j.properties Added resource: simple_sample.py Total MapReduce jobs = 1 Launching Job 1 out of 1 Number of reduce tasks determined at compile time: 1 In order to change the average load for a reducer (in bytes): set hive.exec.reducers.bytes.per.reducer=<number> In order to limit the maximum number of reducers: set hive.exec.reducers.max=<number> In order to set a constant number of reducers: set mapred.reduce.tasks=<number> Starting Job = job_201403031426_0004, Tracking URL = http://jobtrackerhost:50030/jobdetails.jsp?jobid=job_201403031426_0004 Kill Command = "C:\apps\dist\hadoop-1.2.0.1.3.5.0-03\bin\hadoop.cmd" job -kill job_201403031426_0004 Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1 2014-03-03 14:37:20,821 Stage-1 map = 0%, reduce = 0% 2014-03-03 14:37:25,883 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 5.469 sec 2014-03-03 14:37:26,915 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 5.469 sec 2014-03-03 14:37:27,946 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 5.469 sec 2014-03-03 14:37:28,962 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 5.469 sec 2014-03-03 14:37:29,977 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 5.469 sec 2014-03-03 14:37:30,993 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 5.469 sec 2014-03-03 14:37:32,008 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 5.469 sec 2014-03-03 14:37:33,024 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 5.469 sec 2014-03-03 14:37:34,024 Stage-1 map = 100%, reduce = 33%, Cumulative CPU 5.469 sec 2014-03-03 14:37:35,040 Stage-1 map = 100%, reduce = 33%, Cumulative CPU 5.469 sec 2014-03-03 14:37:36,055 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 9.265 sec 2014-03-03 14:37:37,055 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 9.265 sec 2014-03-03 14:37:38,055 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 9.265 sec MapReduce Total cumulative CPU time: 9 seconds 265 msec Ended Job = job_201403031426_0004 MapReduce Jobs Launched: Job 0: Map: 1 Reduce: 1 Cumulative CPU: 9.265 sec HDFS Read: 266 HDFS Write: 2684 SUCCESS Total MapReduce CPU Time Spent: 9 seconds 265 msec OK Time taken: 36.86 seconds, Fetched: 50 row(s) 100004 Motorola Droid X 02a4198bedd37119dabcbb2e8fb4ec92 100015 Apple iPod Touch 4.3.x d9bc8c98d6a6556656e774a64f7b8bb2 100015 Apple iPod Touch 4.3.x d9bc8c98d6a6556656e774a64f7b8bb2 100035 LG VS910 b4bfdffa3e288ed0283ae8c8a37c455e 100035 LG VS910 b4bfdffa3e288ed0283ae8c8a37c455e 100035 LG VS910 b4bfdffa3e288ed0283ae8c8a37c455e 100035 LG VS910 b4bfdffa3e288ed0283ae8c8a37c455e 100035 LG VS910 b4bfdffa3e288ed0283ae8c8a37c455e 100035 LG VS910 b4bfdffa3e288ed0283ae8c8a37c455e 100035 LG VS910 b4bfdffa3e288ed0283ae8c8a37c455e 100035 LG VS910 b4bfdffa3e288ed0283ae8c8a37c455e 100035 LG VS910 b4bfdffa3e288ed0283ae8c8a37c455e 100035 LG VS910 b4bfdffa3e288ed0283ae8c8a37c455e 100035 LG VS910 b4bfdffa3e288ed0283ae8c8a37c455e 100035 LG VS910 b4bfdffa3e288ed0283ae8c8a37c455e 100035 LG VS910 b4bfdffa3e288ed0283ae8c8a37c455e 100036 Samsung SCH-i400 6b314786cda6123fc06eeb855825aea7 100036 Samsung SCH-i400 6b314786cda6123fc06eeb855825aea7 100036 Samsung SCH-i400 6b314786cda6123fc06eeb855825aea7 100036 Samsung SCH-i400 6b314786cda6123fc06eeb855825aea7 100036 Samsung SCH-i400 6b314786cda6123fc06eeb855825aea7 100036 Samsung SCH-i400 6b314786cda6123fc06eeb855825aea7 100036 Samsung SCH-i400 6b314786cda6123fc06eeb855825aea7 100036 Samsung SCH-i400 6b314786cda6123fc06eeb855825aea7 100036 Samsung SCH-i400 6b314786cda6123fc06eeb855825aea7 100036 Samsung SCH-i400 6b314786cda6123fc06eeb855825aea7 100036 Samsung SCH-i400 6b314786cda6123fc06eeb855825aea7 100036 Samsung SCH-i400 6b314786cda6123fc06eeb855825aea7 100036 Samsung SCH-i400 6b314786cda6123fc06eeb855825aea7 100036 Samsung SCH-i400 6b314786cda6123fc06eeb855825aea7 100036 Samsung SCH-i400 6b314786cda6123fc06eeb855825aea7 100036 Samsung SCH-i400 6b314786cda6123fc06eeb855825aea7 100036 Samsung SCH-i400 6b314786cda6123fc06eeb855825aea7 100036 Samsung SCH-i400 6b314786cda6123fc06eeb855825aea7 100036 Samsung SCH-i400 6b314786cda6123fc06eeb855825aea7 100036 Samsung SCH-i400 6b314786cda6123fc06eeb855825aea7 100036 Samsung SCH-i400 6b314786cda6123fc06eeb855825aea7 100041 RIM 9650 d476f3687700442549a83fac4560c51c 100041 RIM 9650 d476f3687700442549a83fac4560c51c 100041 RIM 9650 d476f3687700442549a83fac4560c51c 100041 RIM 9650 d476f3687700442549a83fac4560c51c 100041 RIM 9650 d476f3687700442549a83fac4560c51c 100041 RIM 9650 d476f3687700442549a83fac4560c51c 100041 RIM 9650 d476f3687700442549a83fac4560c51c 100041 RIM 9650 d476f3687700442549a83fac4560c51c 100041 RIM 9650 d476f3687700442549a83fac4560c51c 100041 RIM 9650 d476f3687700442549a83fac4560c51c 100042 Apple iPhone 4.2.x 375ad9a0ddc4351536804f1d5d0ea9b9 100042 Apple iPhone 4.2.x 375ad9a0ddc4351536804f1d5d0ea9b9 100042 Apple iPhone 4.2.x 375ad9a0ddc4351536804f1d5d0ea9b9 Remove-AzureHDInsightCluster -Name $clusterName
Benjamin (@benjguin)
Blog Post by: Benjamin GUINEBERTIERE